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For applications to the problem of radio frequency interference identification, or in
the search for extraterrestrial intelligence, it is important to have a basic understanding of
signal detection algorithms. In this article we give a general technique for assessing the
asymptotic sensitivity of a broad class of signal detection algorithms. In these algorithms,
the decision is based on the value of X, + X, +-- -+ X , where the X.'s are obtained by
sampling and preliminary processing of a physical process.

l. Introduction

Consider the following class of signal-detection rules. A
physical process, which is either pure noise or contains a weak
signal, is under observation. By sampling and preliminary cal-
culation, n real numbers Xl, X2, s Xn are obtained from
the process. We suppose that the X’s can be modeled as
independent, identically distributed random variables, and that
their common distribution depends on a nonnegative real
parameter €, which we may think of as the “signal-to-noise
ratio” of the process. If € =0, no signal is present, but if one
is, € is positive.

The decision as to whether a signal is present or not is made
by comparing S,,/n= (X, +-- -+ X, )/n to a threshold 7, :

S,/n<t, . reportsignal absent

)
Sn/n >/tn: report signal present

Such a threshold test can fail in two distinct ways: it can
report a signal present when it is not, or it can report no signal
present when one actually is. These error events are commonly
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called false alarm and miss, and their respective probabilities
are denoted by Py and Py, . In different applications these two
kinds of errors might not be equally severe, so let us choose
arbitrary but fixed numbers « and  between 0 and 1 and try
to design a detection system for which P, <o, Py, <f. Fora
given value of n, it will in general be possible to design such a
system only if the signal-to-noise ratio € is sufficiently large. In
Section II we will prove a theorem giving an asymptotic
expression for €,, the smallest such €, as a function of . This
expression is typically of the form

~_l§_ -1 —1
¢ ﬁ[Q @+0 (B)] @

where Q™! denotes the inverse to the complementary Gaussian
distribution function
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and. K is a constant which depends on the common distribu-
tion of the X’s.



In Section II we apply our general theorem to several
special cases, in which the random variables X are derived from
the real and imaginary components of a complex Gaussian
signal. By computing the constants K in the asymptotic expan-
sions (cf. Eq. (2)), we are able to compare their sensitivities.
For example, we will show that binary quantization of the
data prior to the computation of Sn/n costs about 0.94 dB in
signal sensitivity.

II. Main Theorem

The following theorem will yield the asymptotic expansion
of Eq. (2) above. In it the distribution function F_(x) is the
common distribution of the random variables X when the
signal-to-noise ratio is e. Thus, in particular, Fo(x) is the
distribution when no signal is present.

THEOREM. For 0 < e < ¢, let F, (x) be a distribution
function with mean u(e), variance o2(¢), and third moment

e)=[lx-u(e) |3 dF (x), such that

1 (€) is continuous, and u (€) > u (0) for e >0 4)

o (€) is continuous and ¢ (0) >0 (5)
7(€) isbounded for 0<e<e,: 7(e)<T (6)
For a given value of €, and n 21, let X0 X, be indepen-

dent random variables with the distribution function Fe(x),
andput§ =X +---+X . Define

p, (e = PA{S >na}

p (a¢)=P{S <na}

n

Let @, B be positive with « + 8 << 1. For n 2 1, take

a, = inf {a:p, (a,0)<a}

n

Since p+(a, 0) is a monotonic function of a, it follows that
P, (an’ O) T

If n is sufficiently large, there are values of € on (O, €,) for
which p (a,, €) <. If we define

€, = inf {ep_(a, €)<B} (7N
then

\/—’i_o<o> [Q‘l @+ (B)] o (1)

(8)

u(e,)- u(0) =

as n — o, where Q(x) is given by Eq. (3), above. In particular,
if u'(0) exists and is positive,

N )
no n 1 0)

[Q“ @+ (B)] fo(n ')
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PROOF. We apply the Berry-Esseen refinements of the central
limit theorem. By Theorem 1 on p. 542 of Ref. I, Vol. 2,

o (€)

- T
rwao [t <

By the continuity of o(e) at 0, o(€) is bounded away from 0 in
some interval 0 < e <. Suppose hereafter that € <e;. Then
3T/o(e)® < B, some positive constant, and

0<e<e;)

b @)- 0 [\/ﬁ";g‘e)(e)] Y < flj

(10)

In terms of the distribution function P(x) =1 - Q(x), this
becomes

p (a,e)-P [\/r-za_—“‘(-e—)] <7£ 0<e<e
o (€) ’

(1)

It follows from Eq. (10) and the fact that p (an, 0) = a, that

=at

a, - u(0) 0B
Q[\/g 0(0) ] Vn

where |6 1] < 1. Let C be any constant such that
C>|Q Y (). Then by the mean value theorem, for » suffi-
ciently large,

=

)-Q“' (@)

Hence
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and so

a, = u(0)+9~»(%(_°‘)+0(i) (12)

n n

The argument of the function P in Eq. (11) for @ =a,, is thus

vn PR (DY A %) 1
(o) [#(0) p(e)+ Tﬂ) ("):I

_of . . Vnu(e)-u(0) ( 1>
‘o(e)[Q'("‘) o\

By hypothesis (4), u(e) - u(0) > 0. Hence for fixed small € >0
on (0, e;), the above expression approaches -0 as » increases.
Thus the function P in Eq. (11) approaches 0 as n - oo, and so
p_(a,,e) > 0. This shows that for n sufficiently large, €,
exists, and furthermore that €, —~ 0 as n — oo, By the definition
(7) of €, in every neighborhood of €, there are values of € for
which p_(a, , €) <, and other values with p_(an, €) > . Thus
there exists a sequence € m such that

lim -
€ = €
M—oo N,M n
lim )=
— (an’en,m

H1— o

From Eq. (11),

a - ufe ) B
a € V- P \/,7_"__"& <
p_ ( n’ n,m { O(Gn,m) \/;’l—

Taking limits as m — <0, and using hypotheses (5) and (6) on
the continuity of u and o, we conclude

an—,u(en) 023
P _n__ - s
{«; e B

where !02| < 1. Arguing as above,

a, u(e,)

o(e,)

Vn =P L@ +0n?)

and using the relationship 27! (x) = -0~ (x), we conclude

= u(e)- ole) )+0 (n! (13)
a, u (e, Jn (i (n™ ")
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Combining Eqgs. (12) and (13), we have

u(e,,)~u(0)=7;[o(o>Q-' @) *+o(e)0 B)] +0(n)

Since by Eq. (5) o is continuous at €=0, and €, ~> 0, then
o(e,) =a(0)+o (1), and Eq. (8) follows. Finally if u'(0)
exists, then (e )- u(0) =e,u'(0) +o(e,), and Eq. (9)
follows. QED.

In Section III we will apply formula (9) to compare com-
peting signal-detection algorithms. Since the term
[Q (@) + Q7 1(8)] does not depend on the distribution F (x),
it will only be necessary to compute the values of ¢(0)/u'(0).
But it is instructive to see how the term Q™ !(a)+Q 1(8)
behaves as a function of « and $, so here is a short table of

Q0 'a):

« 07 @

0.1 1.28

0.01 2.33
1073 3.09
1074 3.72
1075 4.26
1076 4.75

~-8

10 5.61
10710 6.36

From this table we can compute the price paid in sensitivity
for stringent error requirements. For example, if we can toler-
ate @ =0.01, §=0.001, our test will be about 1-dB more
sensitive than if @ =0.001, 3= 0.0001.

lll. Examples

In each of the following examples the random variables X,
will be derived from samples of a complex Gaussian random
process. We denote the real (in phase) components of these
samples by [,, I,,---,l,, and the imaginary (quadrature)
components by @,, @5, - -+, @,,. The s and Q’s are assumed
to be independent, identically distributed normal random vari-
ables with mean zero and variance 1 + ¢. This situation would
occur if the observed process was the sum of a variance |
normal process (noise with avérage power 1) and a variance € -
normal process (a stochastic signal with average power €).



In fact, all of our examples will be of detection algorithms
based on the sample powers! Z, = [l.2 + Ql.2. These random
variables are distributed exponentially, and in fact for e = 0 we
have

VX 2
P{Z<x) = re" 12 gr = 1 - X2 (14)
0

A. Case 1

Test based on the random variables X; = Z¢, where a > 0.
Here an easy manipulation of Eq. (14) yields, for any a > 0,

and € =0,
E(Xb) - Zabf yab e—ydy
0
= 29" [ (ab +1)
where I' denotes the gamma function. Thus u(e)

=E((1 +e)X) =291 +€)°’I'(@+1), and so u(0) = 2°T(a + 1),
©'(0) =a2°T(a + 1). To compute 02(0), we use the formula
0%(0) = E(X?) - (E(X))? =2%T(2a + 1) - (2°T(a + 1))?. Thus
in the asymptotic expansion of Eq. (9) we have

= 0(0):i$l’(2a+1)_ )1/2
K (a) 1 (0) alf‘(a+1)2 1

A short table of K (@) follows:

K (@)
a Numerically Exactly
o* 1.283 7/ 6
1/2 1.045 2 (4 - myfm) 12
1 1.000
2 1.118 NE)
3 1.453 V1973

From this we see that the best test of this kind is fora =1 (a
fact which follows from the Neyman-Pearson theorem); if the
test is based on the amplitude X = v/ /2 + Q?, the loss is 10
log,, (1.045) =0.19 dB. Notice also that in the limit as @ - 0,

" There is no loss in considering the powers instead of the components
separately, by the Neyman-Pearson criterion Ref. 2, Sec. 13.2.

X=270=¢21087 =] +qlog Z +0(a?), and so the performance
must be the same as if we took X =log Z. We conclude that
the loss in this case is 10 log o (/v 6)=1.08 dB.

B. Case 2 (Binary Quantization)

Here the test is based on the random variables
if Z[ <T
iz, >T

where the threshold T is a fixed positive real number. Accord-
ing to Eq. (14), the distribution of the X’s is given by

P{X=1}

1]

P{Z>2T}

/ re_’2/2 dr=e" T2
VT

Hence, if the signal to noise ratio is €,

u(ey = P{(1+e)Z2>T}

1
(¢}
P4
S
|
K\J’
f\‘
i
+ |
m
p—
—_ )

Hence, u(0) = ¢~ 7/2 4'(0) = 1/2 Te~T/2. Since X is a Ber-
noulli random variable, ¢(0) = (u(0) (1 - u(0)))L/2 = (e~ T/2
(1 - e~T/2))1/2 Hence in Eq. (9) the value of 6(0)/u'(0) is

X _ 1/2
-7 |
X

K = =712 (15)

Of course one wishes to choose x so that K will be minimized.
Numerically one calculates that the minimum of Eq. (15)
occurs for 7=3.18725 and is K, = 1.24263. Thus the loss
in sensitivity due to binary quantization is 10 log1 o (1.24263)
=0.94 dB.

C. Case 3

In this case we let b be a fixed positive integer, and assume
that # is a large multiple of b, say n = n,b. The test is based on
the random variables

X, = max (Z([_l)bH,Z L) (16)

(-1)p+2°
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i.e., X, is the maximum of the i-th block of length b. Since by
Eq. (14), the distribution function of Z for e=0 is Fl(x)
=1-e %2 it follows (see Ref. 3, Sec. 13) that the distribu-
tion of each X; is given by

F,(x) = (F ()P = (1-e*?P

Hence the density for the X’s is

P, ) = L1 )

- %e—x/Z (1-e*2P-1 x>0

The r-th moment of X is then given by

u, (b) =%f xe 2 (1- e ax (17)
0

After expanding the term (1 - ¢ */2)®7! by the binomial
theorem, integrating term-by-term, and summing, one obtains
finally

b
fo =2 B (e oy
=1

The sum in Eq. (18) was considered in Ref. 4; in particular it
was shown there that

- LS S |
,ul (b)— 2 (1 +§+§+ +b)

1 1\ 1 1
“2(b)=4 [<]+§++3) +(1+2_2+"'+b_2)]

Hence if € = 0, the mean of X is

~ ] 1

and the variance is
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For general e, u(e) = E[max(l+e) Z, (1 +e4,]
= (1 + €)u(0); and so u'(0) = w(0). Thus in Eq. (9) the term
o(0)/u'(0) is

However in Eq. (9) the number n should be replaced by
ny = n/b, and so the formula for €, becomes
1

1 1\
(1+—2++”—2)
2 b
6, ~ Vb
" \/; <1+_12.++L)

b

QT @+ 07 (B))

and so the sensitivity is measured by the quantity

()
1+_*_+‘..+_
22 b2

l+l+...+l
2 b

A table of this quantity follows:

1/2

K, = Vb

b K, Loss in dB
1 1.000 0

2 1.054 0.23
3 1.102 042
4 1.145 0.59
5 1.185 0.74
6 1.221 0.87
7 1.255 0.99
8 1.286 1.09
16 1.489 1.73
32 1.771 2.48
64 2.153 3.33
128 2.664 4.26
256 3.348 5.25
512 4.256 6.29
1024 5.464 7.38
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